Feb. 16th - Phylogenetic analysis 1.
Using characters, character states to estimate past history
 Cladistic analysis - example using six plants from class
 Outgroups, rooting. Why do we root trees?
 Direction of character-state change - ancestral vs. derived
 Synapomorphies vs. ancestral states, and definition of clades
 What is cladistic analysis?
 Principle of parsimony in cladistic analysis
 Informative vs. uninformative characters, autapomorphies
 Characters and conflicting relationships, homoplasy
 Choosing among alternate tree. Discard characters? Add more characters?

Feb. 18th - Phylogenetic analysis 2.
Summarizing information from multiple trees
 Many equally parsimonious trees
 Consensus trees
Weighting characters
 Should some characters be worth more than others in a cladistic analysis?
 Complex characters - parallel origins vs. parallel gains. Dollo's Law. E.g., eyes.
 Nucleotide changes; purine to purine, pyrimidine to pyrimidine, purine to pyrimidine, pyrimidine to
 purine. Transitions vs. transversions - weighting?
 Rapidly changing characters vs. slowly-changing characters - differential weighting?
 Morphological characters
 DNA characters
Methods using mathematical models that describe how characters (usually DNA characters) evolve
 Maximum likelihood
 Differences in character-state changes
 Rate differences among characters
 Rate differences among taxa
 Advantages and disadvantages of maximum-likelihood methods
Assessing the reliability of a tree
 Once we obtain a tree, how do we decide whether it is reliable
 Decay analysis
 Is a group found on trees only slightly longer than most-parsimonious tree?
 High decay index - more reliable group
 How high is high enough?
 Bootstrap analysis
 Simulates having additional data sets by resampling
 Analysis of all resampled data sets - how frequently does group appear?
 High bootstrap - more reliable group
 How high is high enough?
Multiple data sets
 Congruence among different data sets
 Conflict among data sets
 Combining multiple data sets
Mapping characters on a tree
 Reading assignment no pp. 31–33. Evolution of Ericaceae corolla - fused vs. free.
 Taxon sampling and direction of character evolution
 You are responsible for reading this, and being ready to answer a question about it.
March 1st and March 3rd - Genetic diversity within species 1 and 2.

Conservation of genetic diversity - relevance

 Variation within species, and species performance within its range
 Variation with populations, and their persistence into the future

Are performance and persistence tied to genetic diversity?

Performance within it range - genetic diversity within species and habitat range

 Ecotypes - genetic variants?

 First type of experiment - measure genetic diversity in widespread vs. narrowly-distributed species
 Some show correlation, others do not
 What do the compiled allozyme data say about total variation?
 variation among populations?
 Variation among populations and breeding system

 Second type of experiment - transplants - confirm that ecotypes are genetic variants

Diversity with populations, and persistence into the future

Microhabitat differentiation

 Heterogeneity within a single site
 Does genetic diversity allow occupation of more microhabitats?

Transplant experiments

 Genetic diversity → use of more habitats → increases population's chance of persisting

Stochastic events

 Temporal fluctuation
 Example: seedling survival; different genotypes are superior at different times
 Genetic variation → better survival through temporal variation

Pathogens, herbivores

 Genotypes differ in susceptibility to pathogens, herbivores
 Range of genotypes → some might survive an attack → population might persist

Inbreeding and genetic diversity

 Increase in homozygosity. Inbreeding depression.
 Populations with little variation may show inbreeding depression
 Maximize genetic diversity → minimize inbreeding depression → increase chance of persistence

Founder events

 Population from a small number of individuals
 Low diversity

 Loss of diversity due to initial sampling effect
 Further loss due to genetic drift

 Low genetic diversity:
 Less able to cope with microhabitat variation
 Less able to cope with stochastic events
 More susceptible to inbreeding depression

Conservation relevance?

 Management strategies, sizes of managed populations

Seven recommendations for sampling and conservation of rare species - you are responsible for reading this part and being ready to carefully describe two of them.
March 15th - Speciation.

Speciation - severing of population systems so that migrants from one system would be at a disadvantage when entering another.

Differences may arise through:

Adaptive change - selection
- Divergence due to selection in different environments
- Selection can lead to divergence among populations in very similar habitats

Random change - genetic drift
- Independent of selection
- Magnitude of genetic drift is related to population size

Modes of speciation

Allopatric speciation
- Geographic separation
- Gradual divergence between separated population systems
- Problem: is gene flow a homogenizing force across a large species?

Local speciation (peripheral isolation)
- Small population on the edge of the species range
- Small population - genetic drift
- Edge of range - extreme conditions may promote change through adaptation

Sympatric speciation
- No geographic separation
- Controversial:
 - If the new potential species can interbreed with parental species, how will it diverge?
 - If it can't interbreed, how will it reproduce?

Stephanomeria - a self-fertilizing variant within a non-selfing population

Hybridization among species can lead to

- Reinforcement of post-zygotic mating barriers
- A hybrid swarm
- Fusion of the species
- Introduction of new genes into one or both species
- Evolution of a new hybrid species

Boxes 6B, 6D - You are responsible for reading these, and being prepared to answer a question on one.

Polyploidy - an instantaneous reproductive barrier

- Frequency varies among plant groups
- Production of gametes without chromosome reduction. Fusion of unreduced gametes → polyploid.
- Autopolyploid vs. allopolyploid
- Autopolyploid is a type of hybrid individual, often more stable than a diploid hybrid
- Polyploid X diploid → sterile offspring

Tragopogon in western North America - a well-documented speciation event